上海第二工業(yè)大學(xué)2023年專升本高等數(shù)學(xué)一考試大綱

瀏覽次數(shù):次 發(fā)布時(shí)間:2023-06-05

2023年上海第二工業(yè)大學(xué)專升本高等數(shù)學(xué)一考試大綱已公布,想了解更多資訊,詳情見下文:

上海第二工業(yè)大學(xué)2023年專升本高等數(shù)學(xué)一考試大綱(圖1)

2023年上海第二工業(yè)大學(xué)專升本高等數(shù)學(xué)一考試大綱

本考試大綱是針對報(bào)考理工類專業(yè)的考生參加專升本入學(xué)考試而特別制定??荚噧?nèi)容包括一元函數(shù)微積分、多元函數(shù)微積分、空間解析幾何與向量代數(shù)、微分方程和無窮級數(shù)等??荚嚂r(shí)間2小時(shí),滿分150分。

一、考試內(nèi)容與考試要求

函數(shù)、極限與連續(xù)

(一)考試內(nèi)容

函數(shù)的概念與基本特性;數(shù)列、函數(shù)極限;極限的運(yùn)算法則;兩個(gè)重要極限;無窮小的概念與階的比較;函數(shù)的連續(xù)性和間斷點(diǎn);閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。

(二)考試要求

1.理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性、有界性。了解反函數(shù)的概念;理解復(fù)合函數(shù)的概念。理解初等函數(shù)的概念。會建立簡單實(shí)際問題的函數(shù)關(guān)系。

2.理解數(shù)列極限、函數(shù)極限的概念;了解極限性質(zhì)(唯一性、有界性、保號性)。

3.掌握函數(shù)極限的運(yùn)算法則;熟練掌握極限計(jì)算方法。會用兩個(gè)重要極限求極限。

4.了解無窮小、無窮大、高階無窮小、等價(jià)無窮小的概念,會用等價(jià)無窮小求極限。

5.理解函數(shù)連續(xù)的概念;了解函數(shù)間斷點(diǎn)的概念,會判別間斷點(diǎn)的類型(第一類可去、跳躍間斷點(diǎn)與第二類間斷點(diǎn))。

6.了解初等函數(shù)的連續(xù)性;了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會用性質(zhì)證明一些簡單結(jié)論。

導(dǎo)數(shù)與微分

(一)考試內(nèi)容

導(dǎo)數(shù)概念及求導(dǎo)法則;隱函數(shù)與參數(shù)方程所確定函數(shù)的導(dǎo)數(shù);高階導(dǎo)數(shù);微分的概念與運(yùn)算法則。

(二)考試要求

1.理解導(dǎo)數(shù)的概念及幾何意義,了解函數(shù)可導(dǎo)與連續(xù)的關(guān)系,會求平面曲線的切、法線方程。

2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則;掌握基本初等函數(shù)的求導(dǎo)公式,會熟練求函數(shù)的導(dǎo)數(shù)。

3.掌握隱函數(shù)與參數(shù)方程所確定函數(shù)的求導(dǎo)方法(一階);掌握對數(shù)求導(dǎo)法。

4.了解高階導(dǎo)數(shù)的概念,掌握初等函數(shù)的一階、二階導(dǎo)數(shù)的求法。會求簡單函數(shù)的n階導(dǎo)數(shù)。

5.理解微分的概念,了解微分的運(yùn)算法則和一階微分形式不變性,會求函數(shù)的微分。

中值定理與導(dǎo)數(shù)應(yīng)用

(一)考試內(nèi)容

羅爾中值定理、拉格朗日中值定理;洛必達(dá)法則;函數(shù)單調(diào)性與極值、曲線凹凸性與拐點(diǎn)。

(二)考試要求

1.理解羅爾中值定理、拉格朗日中值定理;會用中值定理證明一些簡單的結(jié)論。

2.掌握用洛必達(dá)法則求上海第二工業(yè)大學(xué)2023年專升本高等數(shù)學(xué)一考試大綱(圖2)等不定式極限的方法。

3.理解函數(shù)極值概念,掌握用導(dǎo)數(shù)判定函數(shù)的單調(diào)性和求函數(shù)極值的方法;會利用函數(shù)單調(diào)性證明不等式;會求較簡單的最大值和最小值的應(yīng)用問題。

4.會用導(dǎo)數(shù)判斷曲線的凹凸性,會求曲線的拐點(diǎn)。

不定積分

(一)考試內(nèi)容

原函數(shù)與不定積分概念,不定積分換元法,不定積分分部積分法。

(二)考試要求

1.理解原函數(shù)與不定積分的概念和性質(zhì)。

2.掌握不定積分的基本公式、換元積分法和分部積分法(淡化特殊積分技巧的訓(xùn)練,對于有理函數(shù)積分的一般方法不作要求,對于一些簡單有理函數(shù)可作為兩類積分法的例題作適當(dāng)訓(xùn)練)。

定積分及其應(yīng)用

(一)考試內(nèi)容

定積分的概念和性質(zhì),積分變上限函數(shù),牛頓-萊布尼茲公式,定積分的換元積分法和分部積分法,無窮區(qū)間上的廣義積分;定積分的應(yīng)用——求平面圖形的面積與旋轉(zhuǎn)體體積。

(二)考試要求

1.理解定積分的概念,了解定積分的性質(zhì)和積分中值定理。

2.理解積分變上限函數(shù)的概念和性質(zhì),掌握牛頓-萊布尼茲公式,能正確運(yùn)用該公式計(jì)算定積分。

3.掌握定積分的換元法和分部積分法。

4.了解定積分的元素法,會計(jì)算平面圖形的面積和旋轉(zhuǎn)體的體積。

5.理解無窮區(qū)間上廣義積分的概念,并會求無窮區(qū)間上的廣義積分。

微分方程

(一)考試內(nèi)容

微分方程的基本概念,可分離變量微分方程與齊次方程,一階線性微分方程,二階常系數(shù)線性微分方程。

(二)考試要求

1.了解微分方程以及微分方程的階、解、通解、初始條件和特解等概念。

2.掌握可分離變量微分方程的解法。

3.會解齊次方程(可轉(zhuǎn)化為可分離變量微分方程的方法)。

4.了解一階線性微分方程的常數(shù)變異法,掌握一階線性微分方程的解法。

5.了解二階線性微分方程解的結(jié)構(gòu),掌握二階常系數(shù)齊次線性微分方程求解方法。

6.會用待定系數(shù)法求自由項(xiàng)為簡單函數(shù)上海第二工業(yè)大學(xué)2023年專升本高等數(shù)學(xué)一考試大綱(圖3)的二階常系數(shù)非齊次線性微分方程的特解方法。

空間解析幾何向量代數(shù)

(一)考試內(nèi)容

空間直角坐標(biāo)系、向量及其運(yùn)算、空間平面及其方程、空間直線及其方程、二次曲面。

(二)考試要求

1.理解空間直角坐標(biāo)系的概念,理解向量的概念及其表示;會求空間兩點(diǎn)的距離。

2.掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積),了解兩個(gè)向量垂直、平行的條件。

3.會求平面方程、直線方程。

4.掌握平面與平面、直線與平面、直線與直線平行與垂直的條件,會求點(diǎn)到平面的距離。

5.了解曲面方程的概念,了解常用二次曲面的方程及其圖形。

多元函數(shù)微分學(xué)

(一)考試內(nèi)容

二元函數(shù)概念、二元函數(shù)極限、連續(xù),偏導(dǎo)數(shù)、全微分、多元函數(shù)的求導(dǎo)法則,隱函數(shù)求導(dǎo)公式,多元函數(shù)微分學(xué)的幾何應(yīng)用,多元函數(shù)極值。

(二)考試要求

1.理解二元函數(shù)的概念,了解多元函數(shù)的概念。

2.了解二元函數(shù)的極限和連續(xù)的概念,會求一些簡單二元函數(shù)的極限。

3.理解二元函數(shù)偏導(dǎo)數(shù)與全微分的概念,了解全微分存在的必要條件與充分條件。掌握多元函數(shù)偏導(dǎo)數(shù)與全微分的計(jì)算方法。

4.掌握多元復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。

5.會求隱函數(shù)的一階偏導(dǎo)數(shù)。

6.了解曲線的切線與法平面、曲面的切平面與法線等概念,并會求它們的方程。

7.理解二元函數(shù)極值與條件極值的概念,會求簡單的二元函數(shù)的極值。了解拉格朗日乘數(shù)法,會求一些比較簡單的最大值與最小值的應(yīng)用問題。

多元函數(shù)積分學(xué)

(一)考試內(nèi)容

二重積分與三重積分的概念與性質(zhì)、二重積分與三重積分的計(jì)算。曲線積分、格林公式。

(二)考試要求

1.理解二重積分的概念與性質(zhì)。

2.掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo))。

3.了解三重積分的概念。會計(jì)算簡單的三重積分(直角坐標(biāo)、柱面坐標(biāo))。

4.理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系,掌握兩類曲線積分的計(jì)算方法。

5.掌握格林公式,掌握平面曲線積分與路徑無關(guān)的條件及應(yīng)用。

無窮級數(shù)

(一)考試內(nèi)容

常數(shù)項(xiàng)級數(shù)的概念和性質(zhì),常數(shù)項(xiàng)級數(shù)斂散性的判別;冪級數(shù)的概念和性質(zhì),函數(shù)的冪級數(shù)展開。

(二)考試要求

1.理解無窮級數(shù)以及收斂、發(fā)散、和的概念,了解無窮級數(shù)的基本性質(zhì)及收斂的必要條件。

2.掌握幾何級數(shù)和上海第二工業(yè)大學(xué)2023年專升本高等數(shù)學(xué)一考試大綱(圖4)級數(shù)的收斂性。

3.掌握正項(xiàng)級數(shù)的比值審斂法,了解正項(xiàng)級數(shù)的比較審斂法。

4.掌握交錯級數(shù)的萊布尼茲定理,理解絕對收斂與條件收斂的概念,會判斷交錯級數(shù)的絕對收斂與條件收斂。

5.理解冪級數(shù)的概念,掌握冪級數(shù)收斂半徑、收斂區(qū)間、收斂域及和函數(shù)的求法。

6.會利用上海第二工業(yè)大學(xué)2023年專升本高等數(shù)學(xué)一考試大綱(圖5)的麥克勞林展開式將一些簡單函數(shù)展開成冪級數(shù)。

二、參考教材

高等數(shù)學(xué)(第七版,上、下冊),同濟(jì)大學(xué)數(shù)學(xué)系編,高等教育出版社

高等數(shù)學(xué)附冊 學(xué)習(xí)輔導(dǎo)與習(xí)題選解,同濟(jì)大學(xué)數(shù)學(xué)系編,高等教育出版社

高等數(shù)學(xué)習(xí)題全解指南(上、下冊),同濟(jì)大學(xué)數(shù)學(xué)系編,高等教育出版社

三、考試細(xì)則

《高等數(shù)學(xué)一》各部分內(nèi)容在試卷中所占比例為:一元函數(shù)微積分50%左右,多元函數(shù)微積分、空間解析幾何與向量代數(shù)30%左右,微分方程10%左右,級數(shù)10%左右。

試卷題型包括選擇題、填空題、解答題和證明題。選擇題和填空題占總分的40%左右,解答題占總分的50%左右,證明題占總分的10%。

考試不允許攜帶計(jì)算器。

以上就是“2023年上海第二工業(yè)大學(xué)專升本高等數(shù)學(xué)一考試大綱”的全部內(nèi)容。


湖南專升本最新資料領(lǐng)取

部分內(nèi)容來源于網(wǎng)絡(luò)轉(zhuǎn)載、學(xué)生投稿,如有侵權(quán)或?qū)Ρ菊居腥魏我庖?、建議或者投訴,請聯(lián)系郵箱(1296178999@qq.com)反饋。 未經(jīng)本站授權(quán),不得轉(zhuǎn)載、摘編、復(fù)制或者建立鏡像, 如有違反,本站將追究法律責(zé)任!


本文標(biāo)簽: 升本統(tǒng)招專升本

上一篇:上海第二工業(yè)大學(xué)2023年專升本基礎(chǔ)日語考試大綱                  下一篇:上海第二工業(yè)大學(xué)2023年專升本基礎(chǔ)英語一考試大綱

湖南3+2 統(tǒng)招專升本

一鍵查詢